Review Dynamic Programming

Formulating dynamic programs - two ways

- A **dynamic program** models situations where decisions are made in a <u>sequential</u> process in order to optimize some objective
- **Stages** *t* = 1, 2, ..., *T*
 - stage *T* ↔ end of decision process
- States $n = 0, 1, ..., N \leftarrow$ possible conditions of the system at each stage
- Two representations: shortest/longest path and recursive

Shortest/longest path		Recursive
node t_n	\leftrightarrow	state <i>n</i> at stage <i>t</i>
$edge(t_n,(t+1)_m)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of edge $(t_n, (t+1)_m)$	\leftrightarrow	cost/reward of decision x_t in state n at stage t that results in being in state m at stage $t + 1$
length of shortest/longest path from node t_n to end node	\leftrightarrow	cost/reward-to-go function $f_t(n)$
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$
shortest or longest path	\leftrightarrow	recursion is min or max:
		$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \begin{pmatrix} \operatorname{cost/reward of} \\ \operatorname{decision} x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from} x_t \end{pmatrix} \right\}$
source node 1 _n	\leftrightarrow	desired cost-to-go function value $f_1(n)$

• Note that the length of edge (T_n, end) is often 0, but not always!

Oil capacity per day	Gas capacity per day	Building cost (\$ millions)
0	0	0 - length of red edges
1000	0	5 - length of blue edges
0	1000	(7) length of orange edges
1000	1000	(14)← length of green edges

Example 1. Simplexville Oil needs to build capacity to refine 1,000 barrels of oil and 2,000 barrels of gasoline per day. Simplexville can build a refinery at 2 locations. The cost of building a refinery is as follows:

The problem is to determine how much capacity should be built at each location in order to minimize the total building cost. To make things a little simpler, assume that the capacity requirements must be met exactly.

- a. Formulate this problem as a dynamic program by giving its shortest path representation.
- b. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

a. Stages:
$$t = 1, 2 \iff \text{building at location t} \quad t = 3 \iff \text{end of process}$$

States: $(n_1, n_2) \iff n_1$ oil capacity and n_2 gas capacity still needed to be built
(in 1000s) for $n_1 \in \{0, 1\}$ and $n_2 \in \{0, 1, 2\}$

Find the shortest path:

b. Stages:
$$t = 1, 2 \iff \text{building at location } t = 3 \iff \text{end of process}$$

States: $(n_1, n_2) \iff n_1$ oil capacity and n_2 gas capacity still needed to be built
(in 1000s) for $n_1 \in \{0, 1\}$ and $n_2 \in \{0, 1, 2\}$

Allowable decisions x_t at stage t and state (n_1, n_2) : t = 1, 2: $x_t = (x_{t1}, x_{t2}) \leftrightarrow$ build x_{t1} oil capacity and x_{t2} gas capacity at location t x_t must satisfy: $(x_{t1}, x_{t2}) \in \{(0, 0), (1, 0), (0, 1), (1, 1)\}$ $x_{t1} \leq n_1$ $x_{t2} \leq n_2$

Cost of
$$x_t$$
 at stage t and state (n, n_2) . $C(x_t) = \begin{cases} 0 & \text{if} \quad x_t = (0, 0) \\ 5 & \text{if} \quad x_t = (1, 0) \\ 7 & \text{if} \quad x_t = (0, 1) \\ 14 & \text{if} \quad x_t = (1, 1) \end{cases}$

Cost-to-go function: $f_t(n_1, n_2) = minimum cost to build n_1 oil capacity and n_2 gas capacity$ $with locations t, t+1,... for t=1,2,3; n_1 = 0,1; n_2 = 0,1,2$

Boundary conditions:
$$f_3(n_1, n_2) = \begin{cases} 0 & \text{if } (n_1, n_2) = (o, o) \\ +\infty & 0/\omega \end{cases}$$
 for $n_1 = 0, 1; n_2 = 0, 1, 2$

Recursion:
$$f_t(n_1, n_2) = \min_{\substack{(x_{t1}, x_{t2}) \\ allowable}} \begin{cases} C(x_{t1}, x_{t2}) + f_{t+1}(n_1 - x_{t1}, n_2 - x_{t2}) \\ for t = 1, 2; n_1 = 0, 1; \\ n_2 = 0, 1, 2 \end{cases}$$

Desired cost-to-go value: $f_1(1,2)$

Stage 3:
$$f_3(n_1, n_2) = \begin{cases} 0 & \text{if } (n_1, n_2) = (0, 0) \\ +\infty & 0 \\ \text{for } n_1 = 0, 1; \quad n_2 = 0, 1, 2 \\ +\infty & 0 \\ \end{pmatrix}$$

Stage 2:
$$f_{2}(1,2) = \min \left\{ 0 + f_{3}(1,2), 5 + f_{3}(0,2), 7 + f_{3}(1,1), 14 + f_{3}(0,1) \right\} = +\infty$$

$$f_{2}(1,1) = \min \left\{ 0 + f_{3}(1,1), 5 + f_{3}(0,1), 7 + f_{3}(1,0), 14 + f_{3}(0,0) \right\} = 14$$

$$f_{2}(1,0) = \min \left\{ 0 + f_{3}(1,0), 5 + f_{3}(0,0) \right\} = 5$$

$$f_{2}(0,2) = \min \left\{ 0 + f_{3}(0,2), 7 + f_{3}(0,1) \right\} = +\infty$$

$$f_{2}(0,1) = \min \left\{ 0 + f_{3}(0,1), 7 + f_{3}(0,0) \right\} = 7$$

$$x_{2} = (0,1)$$

$$f_{2}(0,0) = \min \left\{ 0 + f_{3}(0,0) \right\} = 0$$

Stage 1:
$$f_1(1,2) = \min\left\{0 + f_2(1,2), 5 + f_2(0,2), 7 + f_2(1,1), 14 + f_2(0,1)\right\} = 21$$
 $x_1 = (1,1)$
(desired
(cost-to-go)

Note that
$$x_1 = (o, 1)$$
 and $x_2 = (1, 1)$ is also an optimal solution.