Review Dynamic Programming

Formulating dynamic programs – two ways

- A **dynamic program** models situations where decisions are made in a sequential process in order to optimize some objective
- Stages $t = 1, 2, ..., T$
	- \circ stage $T \leftrightarrow$ end of decision process
- States $n = 0, 1, \ldots, N \leftarrow$ possible conditions of the system at each stage
- Two representations: **shortest/longest path** and **recursive**

• Note that the length of edge (T_n, end) is often 0, but not always!

Oil capacity per day		Gas capacity per day Building cost (\$ millions)
		$\begin{bmatrix} 0 & - \end{bmatrix}$ length of red edges
1000		(5) length of blue edges
	1000	7) length of orange edges
1000	1000	(14) length of green edges

Example 1. Simplexville Oil needs to build capacity to refine 1,000 barrels of oil and 2,000 barrels of gasoline per day. Simplexville can build a refinery at 2 locations. The cost of building a refinery is as follows:

The problem is to determine how much capacity should be built at each location in order to minimize the total building cost. To make things a little simpler, assume that the capacity requirements must be met exactly.

- a. Formulate this problem as a dynamic program by giving its shortest path representation.
- b. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

a. Stages:
$$
t = 1, 2 \leftrightarrow
$$
 building at location t $t = 3 \leftrightarrow$ and of process
\nSfates: $(n_1, n_2) \leftrightarrow n_1$ oil capacity and n_2 gas capacity still needed to be built
\n (n_1000s) for $n_1 \in \{0, 1\}$ and $n_2 \in \{0, 1, 2\}$

Find the shortest path:

b. Stages:
$$
t = 1, 2 \leftrightarrow
$$
 building at location t $t = 3 \leftrightarrow$ and of process
States: $(n_1, n_2) \leftrightarrow n_1$ oil capacity and n_2 gas capacity still needed to be built
 $(in 1000s)$ for $n_1 \in \{0, 1\}$ and $n_2 \in \{0, 1, 2\}$

Allowable decisions x_t at stage t and state (n, n) : t =1,2: $x_t = (x_{t_1}, x_{t_2}) \longleftrightarrow$ build x_{t_1} oil capacity and x_{t_2} gas capacity at location t $\mathfrak{x}_{\mathsf{t}}$ must satisfy: $\left(\, \mathfrak{x_{\mathsf{t}}}, \mathfrak{x_{\mathsf{t_2}}}\right) \epsilon$ $\big\{ (0, \mathfrak{d}), (\mathfrak{l}, \mathfrak{d}), (0, \mathfrak{l}) , (\mathfrak{l}, \mathfrak{l}) \, \big\}$ $\mathcal{A}_{t_1} \leq n_t$ $x_{t_2} \leq n$ ₂

Cost of
$$
x_t
$$
 at $s^{\dagger}t$ and $s^{\dagger}t$ (n, n,) $C(x_t) = \begin{cases} 0 & \text{if } x_t = (0,0) \\ 5 & \text{if } x_t = (1,0) \\ \frac{1}{1} & \text{if } x_t = (0,1) \\ 14 & \text{if } x_t = (1,1) \end{cases}$

Cost-to-go function: $f_t(n_l,n_r)$ = minimum cost to build n, oil capacity and n₂ gas capacity with locations $t, t+1,...$ for $t=1, 2, 3$ $n_1 = 0, 1, 2, 3$ $n_2 = 0, 1, 2$ a: $f_t(n_1, n_2) = \min_{\text{withinum}} \cosh t_0$ by
 $\sinh \cosh t_0$
 $\sinh \cosh t_1$
 $f_3(n_1, n_2) = \begin{cases} 0 & \text{if } (n_1, n_2) \\ +\infty & \text{if } (n_3, n_3) \end{cases}$

$$
Boundary conditions: \quad f_3(n_1, n_2) = \begin{cases} 0 & \text{if } (n_1, n_2) = (0, 0) \\ +\infty & \text{if } (n_1, n_2) = (0, 0) \end{cases} \quad \text{for } n_1 = 0, 1, 1, 2
$$

$$
\mathcal{R}earsion: \qquad f_t(n_1, n_2) = \min_{\substack{(\mathbf{x}_{t_1}, \mathbf{x}_{t_2}) \\ \text{allowable}}} \left\{ \begin{array}{ll} C(\mathbf{x}_{t_1}, \mathbf{x}_{t_2}) + \int_{t_{t_1}}^t (n_1 - \mathbf{x}_{t_1}, n_2 - \mathbf{x}_{t_2}) & \text{for } t = 1, 2, n_1 = 0, 1; \\ 0 & n_2 = 0, 1, 2 \end{array} \right.
$$

Desired cost-to-go value: f, (1,2)

Solving backwards :

Stage 3:
$$
f_3(n_1, n_2) =\begin{cases} 0 & \text{if } (n_1, n_2) = (0, 0) \\ +\infty & \text{if } (n_1, n_2) = (0, 0) \end{cases}
$$
 for $n_1 = 0, 1, n_2 = 0, 1, 2$

Stage 2:
$$
\int_{2}^{1} (1,2) = min \{ 0 + \int_{3}^{1} (1,2), 5 + \int_{3}^{1} (0,2), 7 + \int_{3}^{1} (1,1), 14 + \int_{3}^{1} (0,1) \} = +\infty
$$

\n $\int_{2}^{1} (1,1) = min \{ 0 + \int_{3}^{1} (1,1), 5 + \int_{3}^{1} (0,1), 7 + \int_{3}^{1} (1,0), 14 + \int_{3}^{1} (0,0) \} = 14$
\n $\int_{2}^{1} (1,0) = min \{ 0 + \int_{3}^{1} (1,0), 5 + \int_{3}^{1} (0,0) \} = 5$
\n $\int_{2}^{1} (0,2) = min \{ 0 + \int_{3}^{1} (0,2), 7 + \int_{3}^{1} (0,1) \} = +\infty$
\n $\int_{2}^{1} (0,1) = min \{ 0 + \int_{3}^{1} (0,1), \frac{7}{1} + \int_{3}^{1} (0,0) \} = 7$
\n $\int_{2}^{1} (0,0) = min \{ 0 + \int_{3}^{1} (0,0) \} = 0$
\nStage 1: $\int_{1}^{1} (1,2) = min \{ 0 + \int_{2}^{1} (1,2), 5 + \int_{2}^{1} (0,2), 7 + \int_{2}^{1} (1,1), 14 + \int_{2}^{1} (0,1) \} = 2$

$$
\begin{array}{lll}\n\text{Stage} & | & \text{f}_1(1,2) = \min\left\{0 + \text{f}_2(1,2), \quad 5 + \text{f}_2(0,2), \quad 7 + \text{f}_2(1,1), \quad |4 + \text{f}_2(0,1)| \right\} = & 21 & \text{if } & \text{f}_1 = (1,1) \\
\text{(desired)} & & \text{cost} - \text{to-go}\n\end{array}
$$

Note that
$$
x_1 = (o, 1)
$$
 and $x_2 = (1, 1)$ is also an optimal solution.